
Empirical Evaluation of Data Allocation Algorithms for
Distributed Multimedia Database Systems

Kamalakar Karlapalem, Ishfaq Ahmad, Siu-Kai So and Yu-Kwong Kwok
Department of Computer Science

The Hong Kong University of Science and Technology, Hong Kong
Email: (kamal, iahmad, kai, csricky) @cs.ust.hk

Symbol
0

S:

Abstract
Given a distributed multimedia database system and a set of

queries as well as their frequencies from each site, the objective
of a data allocation algorithm is to locate the multimedia data
objects (MDOs) at different sites so as to minimize the total data
transfer cost incurred in executing the queries. The data
allocation problem, however, is NP-complete, and thus requires
fast heuristics to generate efficient solutions. In this paper we
propose three data allocation algorithms which are based on a
genetic technique, an evolutionary process, and neural networks.
We have implemented and evaluated these algorithms on our
distributed multimedia database system test-bed. A comparison
of the algorithms reveals trade-offs between their solution quality
and time-complexity.

1 Introduction
A distributed multimedia database system [2], [7], [13], [14],

[15] is a database system loosely coupled with a multimedia data
provider indroduced in [lo]. In this architecture, Multimedia
Data Provider (MDP) enables users to retrieve multimedia data
objects (MDOs) from different sites. A Common Multimedia
User Interface (CMUI) enables the users to specify queries
accessing the distributed multimedia database system and
presenting the result to the user. The synchronization for the
presentation of the multimedia data is handled by the CMUI.
Whereas, the Multimedia Data Provider (MDP) identifies the
relevant multimedia data for an user query and facilitates
shipping of the multimedia data to the CMUI. The CMUI is a
client process and the Distributed Database Management System
(DDBMS) and the MDP are server processes.

A major component of multimedia query execution cost is
the data transfer cost [l], [5] , [6]. The MDOs are made of two
kinds of data. The first is the single-media data that is managed
by the DDBMS servers, such as relations (fragments), records,
etc. The second is the multimedia data, such as audio, video, and
image, managed by the MDP servers. These two types of data are
managed by different specialized storage managers, and need to
be retrieved for the user queries. Optimal allocation of MDOs is
a complex problem because of mutual interdependency between
allocation scheme (which gives the location of each of the MDOs
at various sites of a distributed database system) and query
optimization strategy (which decides how a query can be
optimally executed, given an allocation scheme) [ll], [16], [17].
The processing strategy of distributed multimedia objects
retrieval involves shipping of all the multimedia objects to the
user’s query site because this strategy supports efficient access
for synchronization during the presentation of the result by the
CMUI. We introduced the data allocation problem and
performed simulated studies regarding effectiveness of different

Meaning
The jth MDO
The ith site

data allocation algorithms in [lo].
The rest of the paper is organized as follows: Section 2

further elaborates the data allocation problem. Section 3 includes
the algorithms proposed in this paper. The experimental
environment for empirical evaluations for these algorithms is
described in Section 4, the results are presented in Section 5, and
Section 6 concludes this paper.

2 The Data Allocation Problem
In this section, we describe concisely the inputs to the data

allocation problem addressed in this paper. These inputs
characterize the underlying distributed multimedia database
system and help in formulating the problem. We also introduce a
number of notations throughout the paper which are summarized
in Table 1.

Table 1: Definitions of Symbols.

C

c . .,
1

1,
R

‘ x j
U

U;;,

. .

The unit transportation cost matrix of the network
The unit transportation cost from site i to site i’
The allocation limit vector of the sites

The allocation limit of site i
The query data transfer size matrix

The query data transfer size of the xth query of MDO j
The site data transfer size matrix

The site data transfer size of MDO j to site j ’

The set of queries
The xth query

The number of sites in the network

The number uf MDOs in the distributed database system

The number of queries

A The access frequencies matrix

The access frequency of thexth query at site i

L I,

D The MDO dependency matrix

di . The size of the data from MDO i to the site where MDO j is located
The total data transfer cost t

Consider a distributed multimedia database system with m
sites, with each site having its own processing power, memory
and a database system. Let S, be the name of site i where
0 5 i I m - 1. The m sites of the distributed multimedia database
system are connected by a communication network. A link
between two sites S, and S,. (if it exists) has a positive integer
c,,. associated with it giving the cost for a unit data transferred
from site S, to site S,. . If two sites are not directly connected by
a communication link then the cost for unit data transferred is
given by the sum of the cost of links of a chosen path from site
S, to site S,,. Let Q = { q,,, ql, . . ., q.-,} be the most important
queries accounting for say more than 80% of the processing in the
distributed multimedia database system. Each query qr can be
executed from any site with a certain frequency. Let a,, be the

0730-3157/97 $10.00 0 1997 IEEE
296

frequency with which query q1 is executed from site S i . Let
there be k MDOs (or database objects, or relations), named

Any query accessing both the single-niedi,a database
fragments and multimedia objects can be split into two queries,
one which accesses only single-media fragments andl one which
accesses only multimedia data (MDO). A multim.edia query
execution strategy can be:

1) Move-Small: If a binary operation involves two data
MDOs located at two different sites then ship the smaller
data MDO to the site of the larger data MDO.

2) Query-Site: Ship all the data MDOs to the site of query
origin and execute the query.

{Om o,, ..., o!+,>.

3 The Data Transfer Cost Model
There are two aspects of the data transfer cost incurred to

process a query that need to be modeled. The first a!jpect is the
unit data transfer cost from one site to another. This is modeled
as minimum cost path and the corresponding path from one site
to another. Let ci, is cost of transporting a single unit of data from
site Si to site Sj . In order to find the best allocation of a set of
MDOs, it is enough to know the size of data from every MDO
that is required from every site. Let rx, be defined as the size of
data of MDO 0, that needs to be transported to the site where qx
is initiated. Let there be a query qx initiated from site S i , a,
times in an unit time interval. And let q1 request MDO 0, and
each request require rxj amount of dataltransfer from the site
where Oj is located.

Let uij give the amount of data needed to be transferred from
the site where MDO Oj is allocated to the site Si where the
queries are initiated. That is,

n - 1
u . . = U . . r .

I X XJ
IJ x = o

The second type of data transfer cost corresponds to the
deeper levels of the MDOs dependency graph. The data is
transported from the site where one MDO is located to the site
where the other MDO is located in order t@ plerform binary
operation involving two (or more) different MDOs. In this case,
the amount of data of a MDO required by a site varies with the
allocation of other MDOs. Let djr define the size of data from
MDO 0, that needs to be transported to the site where Of is
located so as to execute some binary operation. Let the
corresponding matrix, k x k , be D. But this is depend’ent on the
query that is to be processed.

Let 6;. be the data size of 0, needed to be transported to the
site where Or is located to process qx . A Then the amount of
data that needs to be transported from the site where Oj is
located to the site where Or is given by:

“ - 1 n- l

djr = Z (C aix)&i,
r = O i = O

Let site COj) denote the site where MDO 0 , i:s located.
Then the total transportation cost, T, is given by:

k - l k - 1 m- 1 k - 1

where the first term gives the data transfer cost incurred to
process the binary operations between the MDOs located at
different sites, and the second term gives the data transfer cost
incurred to transfer the results of the binary operations of MDOs
to the site where the query is initiated. The objective in data
allocation problem is to minimize T by altering the function
site (0,) (which maps a MDO to a site).

4 Proposed Data Allocation Algorithms
Developing an efficient solution to the data allocation

problem highly depends on the query execution strategy
employed by the distributed database system. This is because
different query execution strategies have different MDO
migration]patterns. We develop solutions for the data allocation
problem when query-site and move-small query execution
strategies are respectively used by the distributed database
management system and the multimedia data provider. The
proposed algorithms are described as follows:
4.1 The Genetic Algorithm

Genetic algorithms manipulate a population of potential
solutions to an optimization problem [8], [9], [12], [18]. They
operate on encoded representations of the solutions, equivalent to
the genetic material of individuals in nature, and not directly on
the solutions themselves. As in nature, the selection mechanism
provides the necessary driving force for better solutions to
survive. Each solution is associated with a fitness value that
reflects how good it is, compared with other solutions in the
population. The higher the fitness value of an individual, the
higher the chance of survival in the subsequent generation.
Recombination of genetic material in genetic algorithms is
simulated through a crossover mechanism that exchanges
portions between strings. Another operation, called mutation,
causes sporadic and random alternation of the bits of strings.

In the proposed genetic algorithm for the data allocation
problem, we encode the assignment of each MDO in a binary
representation. For example, if an MDO is assigned to site 3, then
its assignment value is 1 1. The assignment value of all the MDOs
are concatenated to form a binary string. Each binary string then
represents a potential solution to the data allocation problem. The
fitness of tlhe string is simply the cost of the allocation. The
selection mechanism is implemented as a simple proportionate
selection scheme: a string with fitness f is allocated f/ (f)
offspring, where f is the average fitness value of the population.
A string with a fitness value higher than the average is allocated
more than one offspring, while a string with a fitness value lower
than the average is allocated less than one offspring.

Pairs of strings are picked at random from the population to
be subjected to crossover. We use the single point crossover.
Assuming that 1 is the string length, the algorithm randomly
chooses a crossover point that can assume values in the range 1
to I - 1 . The portions of the two strings beyond this crossover
point are exchanged to form two new strings. The crossover point
may assume any of the 1 - 1 possible values with equal
probability. Note that crossover is performed only when a
randomly generated number in the range is greater than a pre-
specified crossover rate p c (also called the probability of
crossover); otherwise, the strings remain unaltered. The value of

297

p c lies in the range from 0 to 1. In a large population, p , gives
the fraction of strings actually crossed.

Mutation of a bit is to flip a bit. Just as p e controls the
probability of a crossover, another parameter, pm (the mutation
rate), gives the probability that a bit will be flipped. The bits of a
string are independently mutated

The genetic algorithm for the data allocation problem is
briefly described below.

Genetic Data Allocation Algorithm:
(1) Initialize population. Each individual of the population is a

concatenation of the binary representations of the initial
random allocation of each MDO.

(2) Evaluate population.
(3) no-of-generation = 0
(4) WHILE no-of-generation < MAX-GENERATION DO
(5)
(6) Perform crossover and mutation for the selected

(7) Evaluate population.
(8) no-of-generation ++;
(9) ENDWHILE
(10)Determine final allocation by selecting the fittest individual.

If the final allocation is not feasible, then consider each
over-allocated site to migrate the MDOs to other sites so that
the increase in cost is the minimum.
The time complexity of the GA algorithm is

0 (G P (kZ + km)), where G is the number of generations and P
is the population size.
4.2 The Simulated Evolution Algorithm

This variant of the traditional genetic algorithm is called
problem-based simulated evolution [18], [191. Simulated
evolution is an optimization method based on an analogy with the
natural selection process in the biological environments. In
biological processes species adapt themselves better to the
environment as they evolve from one generation to the next one.
In this evolution process some of the bad characteristics of the old
generation are eliminated and a new generation that is more
suited to the environment is created.

The principal difference between genetic algorithms and
evolutionary strategies is that genetic algorithms rely on
crossover, a mechanism of probabilistic and useful exchange of
information among solutions, to locate better solutions, while
evolutionary strategies use mutation as the primary search
mechanism. Furthermore, in the proposed scheme the
chromosomal representation is based on problem data, and
solution is generated by applying a fast decoding heuristic
(mapping heuristic) in order to map from problem domain to
solution domain. The generic problem-based simulated evolution
is as below.

Simulated Evolution Data Allocation Algorithm:

Select individuals for next population.

individuals .

Construct the first chromosome based on theproblem data
and perturb this chromosome to generate an initial
population.
Use the mapping heuristic to generate a solution for each
chromosome.
Evaluate the solutions obtained.
no-of-generation = 0
WHILE no-of-generation < MAX-GENERATION DO

Select chromosomes for next population.

(7) Perform crossover and mutation for these set of
chromosomes.

(8) Use the mapping heuristic to generate a solution for each
chromosome,

(9) Evaluate the solutions obtained.
(1 0) no-of2eneration = no-of-generation + 1.
(1 1)ENDWHILE
(12)Output the best solution found so far.

The chromosome structure is as follows:

a genes 1 b genes
where number of genes in a = total allocation limit,
and number of genes in b = total number of MDOs.

For a, each gene is a single bit. A value of 1 indicates that the
corresponding allocation space is allowed to be used for this
chromosome. Otherwise, if the bit is 0, the space cannot be used.
This reduces the effective allocation limit for each sites. For b,
each gene is an integer which represents the priority of the MDO
to be considered; a large value means high priority and a small
value means low priority.

The first chromosome in the initial population is constructed
from the information of the table of wij which represents the cost
of allocating M D O j to site i. For each MDO j , we calculate

m

XJ = c
, = I

The objective is to minimize the allocation cost by giving a
higher priority to MDO with larger xj (a large value of xi means
that this MDO will use more transmission time (cost)). Thus, we
simply assign xj as the genes for each MDO position in part b of
the first chromosome in the initial population. All of the genes in
part a of the chromosomes are set to be 1 for the first
chromosome in the initial population since this is the allocation
limit of the original problem. For the remaining chromosomes in
the initial population, the genes in a are chosen randomly as 0 or
1. The genes in b are perturbations of the first chromosome’s
corresponding genes in b. Notice that for genes in a, we must
check whether the new effective allocation limit is enough for all
MDO to be allocated. This can be done simply by counting the
number of 1’s in a and by checking that this sum is greater than
or equal to the total number of MDOs n.

For each chromosome, we find a solution by allocating MDO
j with the highest priority to the site i such that wu is smallest for
all wk) 1 < k < m. If the effective allocation limit embedded in the
genes in part a of the chromosome for that site is exceeded (the
site is already saturated), we allocate this MDO to the site with
the next smallest value of wB for all wli, 1 < 1 < m, 1 # k . We
continue the process for the next MDO with the highest priority
among MDOs not yet allocated.

For each chromosome, the cost function is the total
transmission cost after allocating all the MDOs to some site using
the mapping heuristic. The fitness value for the chromosome is
calculated as

(MaxCost - Cos@))
x:, (~ a x ~ o s t - Cost(i))

Ai) =

where Np is population size, Mancost is the maximum cost
among the chromosomes in the population, z is the convergence

298

factor used for controlling the rate of convergence.
The genetic operators selection, crossover, (and mutation are

applied. Selection means proportionately selecting the
chromosomes in the population according to their fitness values.
Crossover is cutting two chromosomes at the same position and
exchanging the genes after the point of cutting. Mutation is
choosing a gene in a chromosome and reset its value. For genes
in a , simply set the value to either 1 or 0. For genes in b,
perturbing the value in the gene by adding a randomly chosen
value from -q to p (q and p are set as the maximal value of b-
genes divided by 4 in this chromosome). The time complexity of
the problem-based simulated evolution algoritlhm, like GA, is
O(GP(k2 +km)), where G is the number of generations and P is
the population size.
4.3 The Mean Field Annealing Algorithm

The mean field annealing (MFA) technique [3], [4],
combines the collective computation property of the famous
Hopfield Neural Network (HNN) with the anniealing notion of
another well-known optimization algorithm known as the
simulated annealing (SA) [20]. The MFA algorithm is derived
from an analogy to the Ising spin model which is used to estimate
the state of a system of particles or spins in thermal (equilibrium.
In the Ising spin model, the energy of a system with S spins has
the following form:

l S S

= - PtfStSf h s t
2x,11tx k = I ,

where PKI represents the level of interaction between spins k and
1, and sk E { 1, 0) is the value of spin k. It is assumed that
Pkf = PI, and Pkk = 0 for 1 S k, IS S . At the thermal
equilibrium, spin average (sx) of spin k can be icalciulated using
Boltzmann distribution as follows:

1
(’ k) = -

where Qx = (H (s)) I S t = - (H (s)) I s k ~ represents the mean
field acting on spin k, where the energy average (H (s)) of the
system is:

S S .

(H (s)) = ZPP,f(sksf)+ h K (S k)
&=I!*& x = I

The complexity of computing Qk using the above equation
is exponential. However, for large number of spins, the mean
field approximation can be used to compute the energy average :

Hence (H (s)) is linear in (s t) , the mean field
computed using the equation:

can be

Thus, the complexity of computing Qx reduces 1:o 0 (S)
At each temperature, starting with initial spin averages, the

mean field Q k acting on a randomly selected spin is computed.
Then the spin average is updated. This process is repeated for a
random sequence of spins until the system is stabil~zed for the
current temperature.

We formulate the data allocation problem as MFA in the
following manner. A spin matrix (s i j) is used to encode the
allocation of the data MDOs to sites. The matrix consists of k
rows and m columns, representing k MDOs and m sites,
respectively. A value of 1 in each entry indicates the MDO is
allocated to the corresponding site. For example, if sij = 1, then
MDO i is allocated to site j . A valid allocation is one in which
each row of the spin matrix has exactly a single 1. Each spin
variable is a continuous variable in the range [0, 11 , Spin values
converge to either 1 or 0 at the fixed point. Given this
formulatilon, the energy function (i.e., the data transfer cost
function) for the data allocation problem can be formalized
below.

& - I & - I , n - l m - l I ! - I & - 1

i = or = 0 j = 0 J’ = 0
E (s) = 2 C C cjrd,,.sijsj7. + I: ujisij

j = o i = o

Using: the mean field approximation, the expression for the
mean field aPij experienced by spin sij is:

In a feasible allocation, each MDO should be allocated to
exclusiveliy one site. Thus, the sum of the spins across each row
of the matrix should equal unity. This constraint can be explicitly
handled while updating by normalizing each spin s,, as:

Given the above formulation, the MFA algorithm to solving
the data alllocation problem can be briefly formalized below.

MFA Data Allocation Algorithm:
(1) Get the initial temperature To , set T = To.
(2) Initialize the spin averages s = [sw, sol, .. ., sx- ,,”- J , each

si, is initialized as a random number between 0 and 1 .
(3) WHILE temperature Tis in the cooling range DO ~-

WHILE Eis decreasing DO
Select a MDO i at random.
Compute the mean field of the spins at the i-th row, i.e.,
aiij, Vj .
Compute the summation x;i:e@v”r .
Compute the new spin values at the i-th row.
Compute the energy change due to these updates.

ENDWNILE
Update the temperature T according to the cooling
schedule.

(12)ENDWHILE
(13)Determine the final allocation by allocating each MDO to

the site with the largest spin value. If the final allocation is
not feasible, then consider each over-allocated site to
migrale the MDOs to other sites so that the increase in cost
is the minimum.
Note that the last step of the MFA algorithm is necessary

because we do not explicitly check for feasibility in the search
process, which can then explore a broader regions in the search
space. However, we found that this adjustment of the final
allocation were seldom invoked as the allocation limits were
usually very loose. The time complexity of the MFA algorithm is
0 (B K (k + km)).
5 Expel-imental Setup

In this section, we present the experimental setup for the

299

empirical evaluation of the data allocation algorithms described
in the previous sections. Comparisons among these algorithms
will be made by considering the quality of solutions and the
algorithm running times.
5.1 Environment

Empirical evaluation of the algorithms was done by
implementing a prototype loosely-coupled distributed
multimedia database system on a cluster of SUN workstations
with single media relational data stored in the distributed
SYBASE database system. Each of the workstations has an
application system consisting of a client CMUI process, and a
multimedia database server. The multimedia server extracts the
data from the multimedia files and the SYBASE database system,
whereas the CMUI process accepts the users queries and presents
the results. The MDOs in the distributed multimedia database
system are allocated based on the allocation schemes generated
by the algorithms presented in the previous section. A set of
queries are initiated according to the frequencies from various
sites and the time taken to execute the queries is measured. There
are two sites SYBASElO-CI and SYBASE-CS-SVR4 (site 0
and site 1) that store the distributed relational database, and a
cluster of workstations, namely, csl3su1, csl3sul0, cs13su30 and
cs13su40 (i.e., site 2 to site 6, respectively) store multimedia data
files.
5.2 Relations

The distributed multimedia database system consists of
following relations, wherein, the ImageId, VideoID and AudioID
attributes of Product-Media relation point to the files containing
the corresponding image file, video file and audio file,
respectively.
01: Product-Cate ofy(CategofylD, Description)
02: Product-Ty efT pelD,Cate or$D,Description)
03: Media_lnfo~e~alnnforlD, JediaType, IP-addr, Filename, Path, Size)
04: Company(CompanylD, Name, Address, Phone)
0 5 : Product-general(ProductlD, CompanylD, TypelD, Name, Brandname,
Price,Description)
0 6 : Product~media(Product~lD, ImagelD, VideolD, AudilD)
5.3 Queries

We illustrate only one of the ten queries considered for the
experimentation due to lack of space. SQL is used as the query
language for expressing the queries. Each of the queries access
some information from the distributed SYBASE database and
some information from the MDOs. The query 1 accesses all the
office products and presents the images of the office products, a
video clip about the product, and an audio clip describing the
product.
Query 1 -product-category: = ‘Office Products’

SQL : $ID = ImagelD, VideoID, AudioID
select company-name, company-address,
company-phone from Media-Info

where MediaInfoJD in (
select $ID from Product
where TypeID in (

select Type-ID from Product-Type
where CategoryID in (

select Category-ID from
Product-Category
where Description =
‘Office Products’

)
)

7
8
9
10

Total

The network cost between two sites is calculated as the
average of two costs from A to B and from B to A and is given in
Table 3. Network cost is in terms of time in ms required for
transferring one Kbyte.

6 Experimental Results

eof the two SYBASE servers, namely, server 1 and server 0.
6.1 Evaluation of Data Allocation Algorithms

Each query was executed a number of times with the set
frequencies and the total time to execute the queries was
calculated. Table 2 shows the result of data allocation generated
by the mean field annealing algorithm. Each query is executed
five time from each site and average execution time is calculated.
Table 3 shows the average query execution time times the
frequency with which the query executed at each site. The total.

In these experiments we allocate all the MDOs to either on

Table 2: Allocation scheme generated by the MFA algorithm.

24372.81 2343.66 12269.70 0 4Mw.00
21118.58 8158.71 0 10612.20 5584.10
33430.41 0 7276.28 22626.66 34401.33
2321.07 18692.56 9968.52 12144.45 6814.98

249226.41 179340.04 131665.01 195741.57 180727.23

MDO I O 1 I 0 2 I 0 3 I 0 4 I 0 5 I 0 6
Allocated server I 1 1 0 1 1 1 1 1 0 1 1

Table 3: Average execution time x query access frequency (MFA).

Table 4: Allocation scheme generated by the GA.
MDO I 01 I 0 2 I 0 3 I 0 4 I 0 5 I 0 6

Allocated Server I 1 1 1 1 1 I 0 I o I I

Table 5: Average query execution time x query access frequency (GA).

Table 6: Allocation scheme generated by the SE algorithm.

1 MDO I 01 I 0 2 I 0 3 I 0 4 I 0 5 I 06
Allocated Server l O l 0 l l l l l l l I

Table 7: Average execution time x query access frequency (SE).

300

query time cost in this case is 936209. Table 4 and Table 5 show
the results for genetic algorithm. The total query time cost is
936700. Table 6 and Table 7 for simulated evolution (total query
time cost is 918950). These results show the difference in the
allocation schema generated by different algorithms and the total
cost of processing all the queries
6.2 Evaluation of Query Execeution Time!

First, we discuss the query time of different allocation
algorithms at different sites as shown in Tables 2 to 9. In order to
further evaluate the results more clearly, each of query execution
time value is divided by the average of that of values among
different allocation algorithms. Thus algorithm which
consistently gives a value close to 1 .O for most of the queries is a
better algorithm. Otherwise, it implies that the results generated
by the algorithm provide erratic performance in (executing the
queries. From the experiments (not included dui: to Lack of space)
we found that the query time is quite fluctuating for some
algorithms like the mean field annealing algoiithrn. In general,
however, the simulated evolution exhibits the best performance
among all the algorithms. Moreover, simulated evolution tends to
give an optimal solution when compared to exhaustive search
solution.
6.3 Total Running Time of Data Allocation Algorithms

First, we present the total running time for executing the four
algorithms as well as an exhaustive search in Table 8. It can be
seen that simulated evolution gives the least total cost but its
running time is the longest among the three algorithms. Thus,
there is a trade-off between the algorithm and quality of the
solution. Though mean field annealing algorithm is fast, its
solution quality is much worse than simulated evohtion.

Table 8: The total transfer costs and running times of different
allocation algorithms.

Allocation Algorithms I TotalCost I
Mean Field Annealing I 97851967 I

1111.32
351.01 =a 1034.15

Genetic Algorithm I 100196279 I
Simulated Evolution I 86731127 I
Exhaustive Search I 86731127 I -

7 Conclusions
In this paper, we proposed various algorithms for the data

allocation problem in distributed multimedia database systems.
We developed an experimental loosely couplejd distributed
multimedia database system to perform empirical e:valuations of
the proposed algorithms. The experimental ev,aluation involved
studying data allocation algorithms based on mean field
annealing, genetic algorithm, and simulated evolutilon. Further, it
involved implementing these algorithms, allocating data based
on the results of these algorithms, and measuring the actual time
to execute queries from different sites with set frequencies.
Finally, the results collected are evaluated to derive conclusions
regarding the utility of these four algorithms. The best allocation
algorithm was found to be simulated evolution because it gives
allocation with the least total query execution time cost, and also
tends to provide an optimal solution when compared to the
exhaustive solution.
References
[l] P.M.G. Apers, “Data Allocation in Distribu,ted Database

Systems,” ACM Trans. Database Sys., Sep. 1988, pp. 263-304.

[2] P. El. Berra, C. Y. R. Chen, A. Ghafoor, C.C. Lin, T. D. C. Little,
and D. Shin, “Architecture for Distributed Multimedia
Systems”, Computer Comm. vo1.13, no.4 (May 1990) p217-31.

[3] D.EI. Van den Bout and T.K. Miller, “Graph Partitioning using
Annealed Neural Networks,” IEEE Trans. Neural Networks,

[4] T. Ilultan and C. Aykanat, “A New Mapping Heuristic Based on
Mean Field Annealing,” J. Parallel and Distributed
Computing, 16, 1992, pp. 292-305.
D. W. Cornel1 and P. S. Yu, “Site Assignment for Relations and
Join Operations in the Distributed Transaction Processing
Environment,” Proc. Int’l Con$ Data Eng., IEEE, Feb. 1988.

[6] €3. Gavish and H. Pirkul, “Computer and Database Location in
Distributed Computer Systems,” IEEE Trans. Computers, vol.
C-35, no. 7, 1986, pp. 583-590.

[7] A. Ghafoor, “Multimedia Database Management Systems,”
ACM Comp Surveys, vol. 27, no. 4, Dec. 1995, pp. 593-598.

[8] D.E!. Goldberg, Genetic Algorithms in Search, Optimization
and Machine Learning, Addison- Wesley, Mass. 1989.

[9] S. Hurley, “Taskgraph Mapping using a Genetic Algorithm: A
Comparison of Fitness Functions,” Parallel Computing, 19,

[IO] Y-IC. Kwok, K. Karlapalem, I. Ahamad and N. M. Pun, “Design
and Evaluation of Data Allocation Algorithms for Distributed
Multimedia Database Systems”, IEEE Journal on Selected
Areas in Comm., Vol 14, No. 7, pp 1332-1348, Sep., 1996.

[l l] X.M. Lin, M.E. Orlowska and Y.C. Zhang, “Database
Placement in Communication Networks for Minimizing the
overall Transmission Cost,” Mathematical and Computer
Modeelling, 19(1), Jan. 1994, pp. 7-19.

[12] S.W. Mahfoud and D.E. Goldberg, “Parallel Recombinative
Simulated Annealing: A Genetic Algorithm,” Parallel
Computing, 21,1995, pp. 1-28.

[13] T. ozsu and P. Valduriez, Principles of Database Systems,
Preintice-Hall Inc., 1991.

[14] M.T. &su, D. Szafron, G. El-Medani, and C. Vittal, ”An
Object-Oriented Multimedia Database System for a News-on-
Demand Application”, to appear, Multimedia Sys., 1995.

151 T.C. Rakow, E.J. Neuhold, and M. Lohr, “MultimediaDatabase
Systems: The Notions and the Issues,” to be published in
Tagungsband GI-Fachtagung Datenbanksystems in Buro,
Technik and Wissenschaft (BTW), Dresden Marz 1995,
Springer Informatik Aktuell, Berlin, 1995.

161 S. Ram and R.E. Marsten, “A Model for Database Allocation
Incorporating a Concurrency Control Mechanism,” IEEE
Trans. Knowledge and Data Eng., 3(3), Sep. 1991,pp. 389-395.

171 P.I. Rivera-Vega, R. Varadarjan and S.B. Navathe, “Scheduling
Data Redistribution in Distributed Databases,” Proc. Int ’1 Conf
Data Engineering, IEEE, Feb. 1990.

[18] M. :Srinivas and L.M Patnaik, “Genetic Algorithms: A Survey,”
Computer, vol. 27, no. 6 , Jun. 1994, pp. 17-26.

[19] B. Wilson and S.B. Navathe, “An Analytical Framework for the
Redesign of Distributed Databases,” Proc. 6th Advanced
Dalabase Symposium, Tokyo, Japan, 1986.

[20] L. Yong, K. Lishan and D.J. Evans, “The Annealing Evolution
Algorithm as Function Optimizer,” Parallel Computing, 21,

V O ~ 1, no. 2, 1990, pp. 192-203.

[5]

1993, pp. 1313-1317.

1995, pp. 389-400.

301

